Nonuniform Sparse Recovery with Gaussian Matrices
نویسندگان
چکیده
Compressive sensing predicts that sufficiently sparse vectors can be recovered from highly incomplete information. Efficient recovery methods such as l1-minimization find the sparsest solution to certain systems of equations. Random matrices have become a popular choice for the measurement matrix. Indeed, near-optimal uniform recovery results have been shown for such matrices. In this note we focus on nonuniform recovery using Gaussian random matrices and l1-minimization. We provide a condition on the number of samples in terms of the sparsity and the signal length which guarantees that a fixed sparse signal can be recovered with a random draw of the matrix using l1minimization. The constant 2 in the condition is optimal, and the proof is rather short compared to a similar result due to Donoho and Tanner.
منابع مشابه
Analysis $\ell_1$-recovery with frames and Gaussian measurements
This paper provides novel results for the recovery of signals from undersampled measurements based on analysis `1-minimization, when the analysis operator is given by a frame. We both provide so-called uniform and nonuniform recovery guarantees for cosparse (analysissparse) signals using Gaussian random measurement matrices. The nonuniform result relies on a recovery condition via tangent cones...
متن کاملAnalysis ℓ1-recovery with frames and Gaussian measurements
This paper provides novel results for the recovery of signals from undersampled measurements based on analysis `1-minimization, when the analysis operator is given by a frame. We both provide so-called uniform and nonuniform recovery guarantees for cosparse (analysissparse) signals using Gaussian random measurement matrices. The nonuniform result relies on a recovery condition via tangent cones...
متن کاملNonuniform Sparse Recovery with Subgaussian Matrices
Compressive sensing predicts that sufficiently sparse vectors can be recovered from highly incomplete information using efficient recovery methods such as `1-minimization. Random matrices have become a popular choice for the measurement matrix. Indeed, near-optimal uniform recovery results have been shown for such matrices. In this note we focus on nonuniform recovery using subgaussian random m...
متن کاملRecovery of cosparse signals with Gaussian measurements
This paper provides theoretical guarantees for the recovery of signals from undersampled measurements based on `1-analysis regularization. We provide both nonuniform and stable uniform recovery guarantees for Gaussian random measurement matrices when the rows of the analysis operator form a frame. The nonuniform result relies on a recovery condition via tangent cones and the case of uniform rec...
متن کاملAnalyzing Weighted ℓ1 Minimization for Sparse Recovery with Nonuniform Sparse Models
In this paper we introduce a nonuniform sparsity model and analyze the performance of an optimized weighted `1 minimization over that sparsity model. In particular, we focus on a model where the entries of the unknown vector fall into two sets, with entries of each set having a specific probability of being nonzero. We propose a weighted `1 minimization recovery algorithm and analyze its perfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1007.2354 شماره
صفحات -
تاریخ انتشار 2010